
ARL-TR-7928• JAN 2017

US Army Research Laboratory

The Evolution ofRandom Number Generationin MUVES
by Joseph C Collins

Approved for public release; distribution is unlimited.

NOTICES
Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorse-
ment or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

ARL-TR-7928• JAN 2017

US Army Research Laboratory

The Evolution ofRandom Number Generationin MUVES
by Joseph C Collins
Survivability/Lethality Analysis Directorate, ARL

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704‐0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704‐0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202‐
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a
currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD‐MM‐YYYY)

2. REPORT TYPE

3. DATES COVERED (From ‐ To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

18. NUMBER
 OF
 PAGES

	

19a. NAME OF RESPONSIBLE PERSON

a. REPORT

b. ABSTRACT

c. THIS PAGE

19b. TELEPHONE NUMBER (Include area code)

 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

January 2017 Technical Report

The Evolution of Random Number Generation in MUVES

Joseph C Collins

ARL-TR-7928

Approved for public release; distribution is unlimited.

October 2013–December 2016

U.S. Army Research Laboratory
ATTN: RDRL-SLB-D
Aberdeen Proving Ground, MD 21005-5068

Author’s Email: <joseph.c.collins38.civ@mail.mil>

The evolution of random number generation in MUVES proceeds from a short-period low-resolution single-threaded legacy
implementation with questionable numerical and statistical properties. The development of the modern system is traced through
software change requests, resulting in a random number generator that overcomes all shortcomings of the legacy system.
This report traces the history of random number generation in MUVES, including the mathematical basis and statistical
justification for algorithms used in the code. The working code provided produces results identical to the current
implementation. These theoretical and practical details enable the reader to understand the algorithms and ensure that future
enhancements to the production code preserve the integrity of the system.

MUVES, random number generator, parallel processing, thread safe, statistical independence

50

Joseph C Collins

410-278-6832Unclassified Unclassified Unclassified UU

ii

Approved for public release; distribution is unlimited.

Contents
List of Figures v
1. Introduction 1
2. Legacy 1
2.1 Integers 2
2.2 Linear Congruential Generator 2
2.3 Independent RNG Streams 4
2.4 Jumping Ahead for LCGs 4
2.5 Legacy Issues 6

3. Linear Feedback Shift Register 8
3.1 Definition 8
3.2 Matrix Representation 8
3.3 Recurrence Relations 9
3.4 QuickTaus Trinomial LFSR 10
3.5 Characteristic Polynomial 11
3.6 State Details 11
3.7 Jump 12
3.8 Jump Example 12

4. T258 13
4.1 Implementation 13
4.2 The Uniform(0,1) Distribution 15
4.3 Initialization 15
4.4 Seeding 16
4.5 Parallel Processing 16
4.6 Run Time 17

5. SCR 1049–1050 17
6. SCR 1908 18

iii

Approved for public release; distribution is unlimited.

6.1 Consequences 19
6.1.1 Jump Computation Failure 19
6.1.2 Stream independence Failure 19

7. SCR 2138 27
7.1 Identity 28
7.2 Implementation 28
7.3 Jump Verification 29

8. SCR 2142 30
9. Demonstration and Verification 31
9.1 T258 Class Code 34
9.2 Driver Code 36

10. Conclusions and Recommendations 37
11. References 38
List of Symbols, Abbreviations, and Acronyms 39
Distribution List 40

iv

Approved for public release; distribution is unlimited.

List of Figures
Fig. 1 b series, no offset, same scale... 21

Fig. 2 b series, no offset, detail ... 22

Fig. 3 b series, arbitrary offset, same scale ... 23

Fig. 4 b series, arbitrary offset, detail ... 24

Fig. 5 b,m,v CDFs, no offset ... 25

Fig. 6 b,m,v CDFs, arbitrary offset.. 26

v

Approved for public release; distribution is unlimited.

Intentionally left blank.

vi

Approved for public release; distribution is unlimited.

1. Introduction
A random number generator (RNG) is an algorithm with output that is in some sense
statistically indistinguishable from a random sample. This is an essential component
of any stochastic simulation (such as MUVES), which relies on the availability of
independent random quantities for statistical validity. Parallel (distributed) process-
ing adds another layer to this requirement. The sets of random quantities in distinct
threads must also be independent of each other. Otherwise, no sets of quantities
within or among threads can be claimed to be a random sample.

The evolution of random number generation in MUVES over the past 25 years,
from 1990 to 2015, proceeds from a short-period low-resolution single-threaded
implementation with questionable numerical and statistical properties. This legacy
system is documented in Section 2.

The modern concept presented in Sections 3 and 4 overcomes all the shortcom-
ings of the legacy system and provides independent sets of random numbers for
thread-safe parallel processing. Details of the MUVES implementation develop-
ment through software change requests are seen in Sections 5, 6, 7, and 8. Working
algorithm code and a procedure for verification of the statistical independence prop-
erties are in Section 9.

This report traces the history of random number generation in MUVES, includ-
ing the mathematical basis and statistical justification for algorithms used in the
code. The working code provided produces results identical to the current imple-
mentation. These theoretical and practical details enable the reader to understand
the algorithms and ensure that future enhancements to the production code preserve
the integrity of the system.

2. Legacy
Parallel processing was not a design consideration when MUVES development be-
gan. So the legacy RNG was inherently single-threaded. The main concern was
portability, but the legacy RNG is deficient in several other respects. Nonetheless,
it is instructive to consider its construction and operation. Sections 2.1–2.5 describe
the mathematics behind the legacy RNG implementation, and point out undesirable
features and areas that need improvement.

1

Approved for public release; distribution is unlimited.

2.1 Integers
Integer addition, subtraction, and multiplication are intrinsic, but division is char-
acterized by the division algorithm: one can divide any a by any nonzero m to get a
unique quotient q and the remainder r . To be specific,

∀a ∀m > 0 ∃!q ∃!r : a = qm + r , 0 6 r < m . (1)

(The quotient and remainder are made unique by the bounds on r .) The remainder
or “mod” operator “%” expresses this relationship, and we say that “a mod m equals
r”, denoted a%m = r . When the remainder is 0, we say that “m divides a”, denoted
m | a.

Some useful properties of the remainder are

(a ± b)%m = (a%m ± b%m)%m (2)

which follows from a ± b = (qa ± qb)m + (ra ± rb),

(ab)%m = (a%m · b%m)%m (3)

which follows from ab = (qam + ra)(qbm + rb) = qm + rarb, and

b | a =⇒
a
b

%m =
a%(bm)

b
(4)

which follows from a/b = qm + r , a = q(bm) + br , and a%(bm) = br .

2.2 Linear Congruential Generator
The Linear Congruential Generator (LCG) is a basic RNG is defined by a linear
recurrence modulo m

xi+1 = T (xi) = (axi + c) % m (5)

with integer and real output functions z(xi) and u(zi). The RNG state x is not nec-
essarily the same thing as the integer output z(x).

2

Approved for public release; distribution is unlimited.

An LCG has full period m, obtaining all values in 0, . . . ,m − 1, if and only if

m and c are relatively prime

∀ prime q : q | m =⇒ q | (a − 1)

4 | m =⇒ 4 | (a − 1) . (6)

The MUVES legacy RNG is a full-period LCG with

m = 232

a − 1 = 1103515244 = 22 · 132 · 613 · 2663

c = 12345 = 3 · 5 · 823 . (7)

The integer output function is

z = (x/65536)%32678 = (x � 16) & 0x7fff , (8)

giving a 15-bit integer, 0 6 z 6 215 − 1 = 32767. “Right shift” is “�” and “bitwise
and” is “&.”

The real output function is

u = z/32768 = z/215 , (9)

approximating U (0,1) with 4 fully significant digits and resolution ε ≈ 3 × 10−5.

The integer output z is the same as rand(), the C library standard RNG in Kernighan
and Ritchie.1 The “rand” man page offers a warning about this function.

The versions of rand() and srand() in the Linux C Library use the same random

number generator as random(3) and srandom(3), so the lower-order bits should be

as random as the higher-order bits. However, on older rand() implementations, and

on current implementations on different systems, the lower-order bits are much less

random than the higher-order bits. Do not use this function in applications intended

to be portable when good randomness is needed. (Use random(3) instead.)

See Collins2 for randomness test results, including the failure of this function.

3

Approved for public release; distribution is unlimited.

2.3 Independent RNG Streams
Any RNG cycle can be used to create statistically independent RNGs by 2 funda-
mental methods. The partition method is to divide the cycle into non-overlapping
streams of consecutive elements, considered to be mutually independent. This is
accomplished by advancing (jumping) the RNG in fixed increments (jumps) to ob-
tain the stream starting points. To get n streams from a RNG with period m, use the
jump m/n. The other method is leapfrog, where the n stream starting points are con-
secutive states s1, . . . , sn from the RNG cycle. Then the RNG is used with a jump
of n in each stream to obtain non-intersecting interleaved streams, considered to be
mutually independent. In either case the effective useful stream length or period is
m/n, which is exhausted when one stream collides with another.

MUVES uses the partition method and 8 streams, 4 denoted “Shot Pattern”, “Clus-
ter”, “Shot Assessment”, “BAD”, and 4 unused. First, seed the RNG with a 32-bit
integer s1, this is stream 1. Then the other 7 streams are obtained by jumping ahead
k = 229 = 232/8 = 536870912 in the cycle, starting at si = T k (si−1) for i = 2, . . . ,8.
To use the streams, apply the single-step (jump 1) transition T (x) in each stream.

To implement the leapfrog method, seed the RNG with a 32-bit integer s1 for stream
1. Then the single-step (jump 1) transition starts the other 7 streams at si = T (si−1)
for i = 2, . . . ,8. To use the streams, apply the jump 8 transition T8(x) in each
stream. MUVES does not use leapfrog, but the concept appears later in another
context.

2.4 Jumping Ahead for LCGs
Either method is useful (and easy to implement) for an LCG, because repeated
application of the LCG transition T (x) = (ax + c)%m of Eq. 5 is another LCG

T k (x) = (ak x + ck) % m . (10)

To compute the coefficients of the jump LCG, note that modulo m,

x1 = T (x0) = ax0 + c

x2 = T2(x0) = ax1 + c = a(ax0 + c) + c = a2x0 + ac + c

x3 = T3(x0) = a3x0 + a2c + ac + c = a3x0 + (a2 + a + 1)c (11)

4

Approved for public release; distribution is unlimited.

so in general (mod m),

xk = T k (x0) = ak x0 + ck = ak x0 +

k−1∑
i=0

ai · c = ak x0 +
ak − 1
a − 1

· c . (12)

Apply the properties of Section 2.1 to see that

ak = (ak)%m and ck =

[
(ak − 1)%

[
(a − 1) m

]
a − 1

· c
]

%m . (13)

High powers of any w can be computed with “exponentiation by squaring.” One can
obtain w2p

by starting with w and recursively squaring p times, each doubling the
exponent. The sequence so obtained is w,w2,w4,w8, . . . ,w2p

since w = w1 = w20

and (
w2p)2

= w2·2p

= w2p+1
. (14)

In other words, square w recursively p times to get w2p
.

The following C code computes LCG coefficients for T k = ak x + ck where k = 2p

and p = 0, . . . ,32 based on T (x) = ax + c with MUVES LCG parameters.

#include <stdio.h>

#include <stdint.h>

int main() {

long unsigned a=1103515245, c=12345, m=1L<<32, ak[33], ck[33], p;

__uint128_t b;

for(b=ak[0]=a, ck[0]=c, p=1; p<=32; p++) {

ak[p] = (ak[p-1] * ak[p-1]) % m;

b = (b * b) % ((a-1)*m);

ck[p] = ((b-1) % ((a-1)*m) / (a-1) * c) % m;

}

for(p=0; p<=32; p++)

printf("k = 2^%-2d = %10lu : ak = %10u ck = %10u\n",

p, 1UL<<p, ak[p], ck[p]);

}

Note
(
a2p−1)2

= a2p
in the computation of

(
a2p)

%m, and b =
(
a2p)

%
[
(a − 1)m

]
.

The latter needs 128-bit integers.

The output is

k = 2^0 = 1 : ak = 1103515245 ck = 12345

5

Approved for public release; distribution is unlimited.

k = 2^1 = 2 : ak = 3265436265 ck = 3554416254

k = 2^2 = 4 : ak = 3993403153 ck = 3596950572

k = 2^3 = 8 : ak = 3487424289 ck = 3441282840

k = 2^4 = 16 : ak = 1601471041 ck = 1695770928

k = 2^5 = 32 : ak = 2335052929 ck = 1680572000

k = 2^6 = 64 : ak = 1979738369 ck = 422948032

k = 2^7 = 128 : ak = 387043841 ck = 3058047360

k = 2^8 = 256 : ak = 3194463233 ck = 519516928

k = 2^9 = 512 : ak = 3722397697 ck = 530212352

k = 2^10 = 1024 : ak = 1073647617 ck = 2246364160

k = 2^11 = 2048 : ak = 2432507905 ck = 646551552

k = 2^12 = 4096 : ak = 1710899201 ck = 3088265216

k = 2^13 = 8192 : ak = 3690233857 ck = 472276992

k = 2^14 = 16384 : ak = 4159242241 ck = 3897344000

k = 2^15 = 32768 : ak = 4023517185 ck = 2425978880

k = 2^16 = 65536 : ak = 3752067073 ck = 556990464

k = 2^17 = 131072 : ak = 3209166849 ck = 1113980928

k = 2^18 = 262144 : ak = 2123366401 ck = 2227961856

k = 2^19 = 524288 : ak = 4246732801 ck = 160956416

k = 2^20 = 1048576 : ak = 4198498305 ck = 321912832

k = 2^21 = 2097152 : ak = 4102029313 ck = 643825664

k = 2^22 = 4194304 : ak = 3909091329 ck = 1287651328

k = 2^23 = 8388608 : ak = 3523215361 ck = 2575302656

k = 2^24 = 16777216 : ak = 2751463425 ck = 855638016

k = 2^25 = 33554432 : ak = 1207959553 ck = 1711276032

k = 2^26 = 67108864 : ak = 2415919105 ck = 3422552064

k = 2^27 = 134217728 : ak = 536870913 ck = 2550136832

k = 2^28 = 268435456 : ak = 1073741825 ck = 805306368

k = 2^29 = 536870912 : ak = 2147483649 ck = 1610612736

k = 2^30 = 1073741824 : ak = 1 ck = 3221225472

k = 2^31 = 2147483648 : ak = 1 ck = 2147483648

k = 2^32 = 4294967296 : ak = 1 ck = 0

See the MUVES source code Rn/RnLegacy.cpp, where ak and ck for k = 229 are
documented as “magic beans”.

2.5 Legacy Issues
The legacy RNG fails most common tests of randomness. This alone is a reason to
reject the legacy RNG outright.

The period of 229 ≈ 5 × 108 is too short. At a rate of 9 million random number
draws per second this is exhausted in 60 seconds. In terms of how many random

6

Approved for public release; distribution is unlimited.

quantities MUVES uses, consider an analysis with 1000 cells in a view and 1000
BAD fragments per shot using 8 threats and 8 velocities. With 9 iterations, the
number of fragments has already exceeded the stream length.

The resolution of 4 digits (15 bits) does not adequately cover the range of double-
precision uniform values on the unit interval. Full IEEE double resolution requires
15 digits (53 bits).

Every random quantity needs its own stream for true independence. The 8 streams
available in the legacy implementation place an unreasonably low limit on the pos-
sible number of independent stochastic quantities.

The legacy implementation provides a single set of random quantities, and as such
is not thread-safe or suitable for parallel processing. Independent shotlines need
independent sets of independent quantities.

We need a high-quality fast 64-bit RNG with a huge period that can easily be parti-
tioned (into streams) for independent parallel processing and the streams partitioned
(into substreams) for independent quantities.

Such a system is the topic of the next section.

7

Approved for public release; distribution is unlimited.

3. Linear Feedback Shift Register
Collins2 documents the details of T258, the RNG currently implemented in MUVES,
based on the linear feedback shift register (LFSR). For clarity some information is
repeated in the following along with subsequent developments. Following the defi-
nition, the (equivalent) matrix and recurrence relation representations give concrete
examples of general LFSR implementation, but MUVES uses neither. Instead, an
efficient algorithm (QT) can be used for the particular class of LSFRs in T258.

3.1 Definition
F2 is the finite field with 2 elements {0,1} which are equivalent to bits. In F2 addition
is subtraction as 1 + 1 = 0 and 1 = −1. Let x0, x1, x2, . . . be a sequence from F2. An
LFSR sequence obeys some recurrence with ci ∈ F2

xn+k =

k−1∑
i=0

ci xn+i = ck−1xn+k−1 + . . . + c1xn+1 + c0xn (15)

so any bit is determined by the previous k bits. Blocks of L bits can yield L-bit
integers z with 0 6 z < 2L via the appropriate output function

z =

L−1∑
i=0

2L−1−i xn+i = 2L−1xn + . . . + 20xn+L−1 (16)

or real numbers u with 0 6 u < 1 via the output function u = z/2L

u =

L−1∑
i=0

2−i−1xn+i = 2−1xn + . . . + 2−L xn+L−1 . (17)

3.2 Matrix Representation
The matrix representation uses a k-bit nonzero state vector Xn = (xn,0, . . . , xn,k−1)
and a k × k transition matrix A, both with components in F2. The transition recur-
rence is Xn+1 = AXn. The shift is xn+1, i = xn, i+1 for i = 0, . . . , k − 2, and the last
component xn+1, k−1 of Xn+1 is determined by the recurrence of Eq. 15. Note that
in general Xn+k = Ak Xn. Here, A implements xk+4 = xk+2 + xk starting with X0,

8

Approved for public release; distribution is unlimited.

where

A =



0 1 0 0

0 0 1 0

0 0 0 1

1 0 1 0



and X0 =



x0

x1

x2

x3



. (18)

Then X1, . . . ,X5 are seen to be



x1

x2

x3

x2 + x0



,



x2

x3

x2 + x0

x3 + x1



,



x3

x2 + x0

x3 + x1

x0



,



x2 + x0

x3 + x1

x0

x1



,



x3 + x1

x0

x1

x2



. (19)

The matrix A has characteristic polynomial P(z) = det(zI − A) = z4 − z2 − 1.
Since P(A) = 0, we have A4 = A2 + I and in general Ak+4 = Ak+2 + Ak . Note that
X4 = X2 + X0 and X5 = X3 + X1 and in general Xk+4 = Xk+2 + Xk . So xn and Xn

and An follow the same recurrence.

We never use the matrix implementation.

3.3 Recurrence Relations
Any matrix A has characteristic polynomial (CP)

C(z) = det(zI − A) = zk − ck−1zk−1 − · · · − c1z − c0 . (20)

The Cayley-Hamilton theorem assures that C(A) = 0, therefore

Ak = ck−1 Ak−1 + · · · + c1 A + c0I . (21)

C(z) is also the CP of the recurrence Xn+1 = AXn, consider Xn+k = Ak Xn, so

Xn+k = ck−1Xn+k−1 + · · · + c1Xn+1 + c0Xn . (22)

The recurrence gives the sequence of vectors Xn, where each ci ∈ F2, and applies
to each coordinate (bit) of Xn.

We never use the recurrence to implement the RNG.

9

Approved for public release; distribution is unlimited.

3.4 QuickTaus Trinomial LFSR
L’Ecuyer’s QuickTaus (QT) algorithm3 uses a trinomial recurrence P(z) = zk −

zq − 1 to generate a (horizontal) bit stream in blocks of s bits according to bn+k =

bn+q + bn. Word size is L bits. A, B, and C are words. A is the LFSR state. C is a
mask of k ones, then L − k zeros.

The QT algorithm updates A.

B = A << q; // q-bit left-shift of A

B = A ^ B; // A xor B, bitwise

B = B >> (k-s); // (k-s)-bit right-shift of B

A = A & C; // A and C, bitwise

A = A << s; // s-bit left-shift of A

A = A ^ B; // A xor B, bitwise

The C/C++ implementation of QT is succinct.

C = -0x1 << (L-k);

A = ((A & C) << s) ^ (((A << q) ^ A) >> (k - s));

Note the use of the “twos complement” negative integer representation. A negative
integer is stored as the twos complement of its absolute value, which is the sum of
its ones complement (all bits reversed) and 0x1. So -0x1 = 0xfff...fff.

An example illustrates the action of QT. Consider P(z) = z28 − z3 − 1, so k = 28
and q = 3. The bit recurrence is bn+28 = bn+3 + bn. The block size is s = 17, the
word size is L = 32. The mask is C = -0x10 = 0xfffffff0, which has k = 28
ones followed by L − k = 4 trailing zeros. So the C/C++ implementation is

x = ((x & -0x10) << 17) ^ (((x << 3) ^ x) >> 11);

In detail, step by step:

x ; // (x0..x28 , x29..x31) z0 = 1, initial state satisfies P(z)
y = x << 3 ; // (x3..x31 , 3 @ 0) z3, step forward 3
y = y ^ x ; // (x28..x56 , x29..x31) by the construction, z3 + z0 = z28

y = y >> 11; // (11 @ 0 , x28..x48) tail=new block of s bits, 32 to 48
x = x & C ; // (x0..x27 , 4 @ 0) make room for new block in x
x = x << 17; // (x17..x27 , 21 @ 0) pop s bits
x = x ^ y ; // (x17..x27 , x28..x48) combine bitwise: x+y mod 2

This generates bits “horizontally” in blocks of 17, and successive words are

x = (x0 ... x14 , x15 ... x31)

A(x) = (x17 ... x31 , x32 ... x48)

10

Approved for public release; distribution is unlimited.

3.5 Characteristic Polynomial
Note that columns are “vertically” leapfrog (by 17) sequences from P(z) Using any
bit position x[b] vertically from the sequence x=A(x), the characteristic polyno-
mial can be computed as detailed in Collins.2

C(z) =

28∑
i=0

ci zi = z28 + z19 + z17 + z15 + z10 + z6 + z3 + z2 + 1 . (23)

C(z) is also the characteristic polynomial, hence the recurrence, of the words them-
selves. Only 2k bits are required for this operation, making the LFSR crypto-
graphically useless. From the 2k bits x0, . . . , x2k−1, construct the k + 1 vectors
Xi = (xi, . . . , xi+k−1) each of length k for i = 0, . . . , k. Since Xk is a linear combi-
nation of the previous k vectors X0, . . . ,Xk−1, the solution of the linear system



xk

xk+1

xk+2
...

x2k−1



=



xk−1 · · · x2 x1 x0

xk · · · x3 x2 x1

xk+1 · · · x4 x3 x2
...

. . .
...

...
...

x2k−2 · · · xk+1 xk xk−1





ck−1

ck−2

ck−3
...

c0



(24)

provides the coefficients of C(z), along with ck = 1 as ck Xk =
∑k−1

i=0 ci Xi. The
Berlekamp-Massey algorithm is an efficient algorithm for solving this system of
equations. Also, in each row (j = 0, . . . , k − 1) we see

xk+ j =

k−1∑
i=0

ci xi+ j . (25)

3.6 State Details
P(z) generates horizontal bit stream computed in 17-bit blocks:

101000000111100010011010000110100011101111000100101 ...

10100000011110001 00110100001101000 11101111000100101 ...

Shift to fill words, new block on the right, (partial) old block shifted left:

010010110000100 10100000011110001

100000011110001 00110100001101000

110100001101000 11101111000100101

...

11

Approved for public release; distribution is unlimited.

C(z) generates each vertical bitstream and also the words:

01001011000010010100000011110001 = 0x4b0940f1

10000001111000100110100001101000 = 0x81e26868

11010000110100011101111000100101 = 0xd0d1de25

...

3.7 Jump
The division algorithm for polynomials is analogous to the integer division algo-
rithm: Divide zd by C(z) to get the quotient Qd (z) and remainder Jd (z), which
satisfy zd = Qd (z)C(z) + Jd (z) where Jd = 0 or 0 6 deg Jd < deg C = k.
The remainder is the jump polynomial with coefficients in F2 = {0,1}: Jd (z) =

zd mod C(z) =
∑k−1

i=0 ji zi. We know C(A) = 0, therefore Ad = Jd (A), and

xn+d = Ad xn = Jd (A) xn =

k−1∑
i=0

ji xn+i . (26)

Thus, a future (jump) state is some linear combination of only k successive states.
To compute J2p , start with m = 0 and apply p iterations of squaring mod C(z)

z2m+1
mod C(z) =

(
z2m

)2
mod C(z) . (27)

Each step is an application of the division algorithm via synthetic division in F2

using Knuth’s algorithm referenced in Collins.2

3.8 Jump Example
The state transition is x = A(x) where

unsigned A (unsigned x) {

return ((x & -0x10) << 17) ^ (((x << 3) ^ x) >> 11);

}

For p = 64, the 2p jump polynomial for our example is

J (z) = z27 + z26 + z25 + z24 + z22 + z19 + z18 + z15 + z11 + z9 + z8 + z6 + z5 + z2 + 1
J = 0x0f4c8b65 = 0000 1111 0100 1100 1000 1011 0110 01012

To apply to state x, construct the F2-linear combination of successive states:

unsigned j, t=x, y=0;

for(j=J; j; j>>=1, t=A(t)) if(j & 1) y ^= t;

Then y = A2p
x = A264

x = A18446744073709551616x.

12

Approved for public release; distribution is unlimited.

State vectors and polynomials coefficients (0 or 1) are packed into integers.

XOR (^) is F2 vector space addition.

4. T258
In practice, a single LFSR is not good enough. MUVES implements the RNG al-
gorithm T258,2 an extension of L’Ecuyer’s LFSR2584 providing probabilistically
independent sets of random vectors and suitable for parallel processing (thread-
safe).

T258 uses a set of five 64-bit LFSRs, each implementing a recurrence defined by a
primitive polynomial of the form P(z) = zk − zq−1 in bit blocks of size s by means
of the QT algorithm.

Each LFSR is implemented with QT transition

x = ((x & C) << s) ^ (((x << q) ^ x) >> (k - s));

The QT parameters for the 5 components of T258 are

L k q s k-s L-k M = -C

0 64 63 1 10 53 1 0x000002

1 64 55 24 5 50 9 0x000200

2 64 52 3 29 23 12 0x001000

3 64 47 5 23 24 17 0x020000

4 64 41 3 8 33 23 0x800000

The LFSR periods are Pi = 2ki − 1 for k ∈ {63,55,52,47,41},

The Pi are pairwise relatively prime, so the period of T258 is P =
∏5

i=1 Pi ≈ 2258.

4.1 Implementation
For consistent presentation hereafter, we use a C++ class to implement T258. Com-
plete current code is in Section 9. This is not production MUVES code, but the
algorithms are identical.

typedef uint64_t uz;

class rng { // T258

public: // ...

rng(uz seed); // constructor

rng& init(); // (re)initialize

rng& t(); // state transition

13

Approved for public release; distribution is unlimited.

rng& jump(uz p); // jump 2^p

rng& jumpk(uz k, uz p); // jump k*2^p

uz gen(); // integer generator

double u01(); // u(0,1) generator

static const int JS = 86; // log_2 (small jump)

static const int JL = 172; // log_2 (large jump)

bool operator!=(const rng& w); // state comparison

bool operator==(const rng& w); // state comparison

private: // ...

uz s[5]; // LFSR state array

uz seed; // this.seed

void seedx(void); // set seed

static const int CPd[5]; // CP degrees

static const uz JP[63][5]; // jump polynomials

};

Representation of the T258 state transition is

rng& rng::t() { // T258: C s q k-s

s[0] = ((s[0] & -0x000002) << 10) ^ (((s[0] << 1) ^ s[0]) >> 53);

s[1] = ((s[1] & -0x000200) << 5) ^ (((s[1] << 24) ^ s[1]) >> 50);

s[2] = ((s[2] & -0x001000) << 29) ^ (((s[2] << 3) ^ s[2]) >> 23);

s[3] = ((s[3] & -0x020000) << 23) ^ (((s[3] << 5) ^ s[3]) >> 24);

s[4] = ((s[4] & -0x800000) << 8) ^ (((s[4] << 3) ^ s[4]) >> 33);

return *this;

}

The 64-bit unsigned integer function gen() returns values in 0, . . . ,264 − 1.

uz rng::gen() { // 64-bit integer

t(); // transition

return s[0] ^ s[1] ^ s[2] ^ s[3] ^ s[4];

}

The function u01() is a discrete version of the continuous U (0,1) distribution.

double rng::u01() { // U(0,1)

uz z;

const static double d = 1.0/(1UL<<53); // 1/2^53

do z = gen() >> 11; while(!z);

return d * z;

}

14

Approved for public release; distribution is unlimited.

4.2 The Uniform(0,1) Distribution
The real function u01() uses 53 bits of the full 64-bit integer to compute a discrete
version of the continuous U (0,1) distribution with evenly-spaced equiprobable out-
put i/253 for i = 1,2,3, . . . ,253 − 1. These are the expected values of U (0,1) order
statistics for a sample of size 253 − 1 and yield the correct discrete approximation.
Note the symmetry in the sense that u01() and 1-u01() have the same distribution.
In fact, 53 is the largest number with properties, as the internal IEEE representation
of double uses 53 bits implicitly.

It may be tempting to obtain more “accuracy” by using all 64 bits and dividing
by 264, but this is an error. The resulting distribution will not have equiprobable
evenly-spaced values and will not be symmetric. Eventually, some such x > 0 will
be so small that 1 − x = 1. The program will crash on something like log(1 − x)
expecting that both 0 < x < 1 and 0 < 1 − x < 1.

4.3 Initialization
L’Ecuyer3 states a condition required for QT, that the initial state must be a valid
recurrence element:

“For this algorithm to work properly, A must be initialized correctly with a valid

initial S0; that is, which agrees with the recurrence.

[General initialization algorithm omitted.]

If the additional condition L − k 6 r − s is satisfied, then it can be easily verified

that after the first pass through the six steps of QuickTaus, A will necessarily con-

tain a valid state, even if the initial state S0 was not valid. In that case, the above

initialization procedure is not necessary for running the generator; just skip the first

value.”

For T258, the additional condition is satisfied since r = k − q, the general initial-
ization algorithm is not required, and correct operation is obtained by “skipping the
first value”, implemented in the initialization code as a single call to QT with its
return value discarded.

Without this initialization feature, computation of the C(z) fails. The results are
random depending on the (incorrect) initial state. Consequently, computation of the
J (z) also fails, since these depend on the C(z). In the current implementation the

15

Approved for public release; distribution is unlimited.

C(z) are not used, and the J (z) are pre-computed and stored in tables, so this is not
an issue. However, jump computation fails even with correct J (z).

Moreover, if the implementation is ever changed to compute new J (z) for different
jump sizes, include dynamic computation of C(z) and J (z), replace the RNG, or
perform diagnostic tests or verification and validation, etc., the condition is neces-
sary or else the computations will fail.

4.4 Seeding
L’Ecuyer4 presents conditions for correct seeding of LFSR RNGs.

“Before calling lfsr113 for the first time, the variables z1, z2, z3, and z4 must be

initialized to any (random) integers larger than 1, 7, 15, and 127, respectively. In

other words, the k j most significant bits of z j must be nonzero, for each j.

Ideally, the vector of initial seeds (z1, . . . , z j) would be drawn from a uniform dis-

tribution over the set of admissible values.”

Minimum values for T258 seed states are denoted as M = −C in the parameter
table on page 13. If x < M then QT (x) = 0, and the LFSR is stuck at 0. This is
known as the sink condition. Thus, only seed values x with x > M are admissible,
and ideal seed values x are uniform random with x > M . Note that C = −M is the
QT mask value.

4.5 Parallel Processing
Partition RNG with period P ≈ 2G into 2S independent streams of length 2G−S

for parallel processing or shotlines. Partition each stream into 2B independent sub-
streams of length 2G−S−B, the effective “period” of any scalar RNG for independent
variables.

T258 has G = 258, and MUVES uses S = B = 86, so G− S = 172 and G− S − B =

86. The global RNG is seeded once to set base state. Then 286 streams are separated
by long jumps of 2172 from the base. In each stream, 286 substreams are separated
by short jumps of 286, the effective substream “period.”

16

Approved for public release; distribution is unlimited.

4.6 Run Time
Suppose numbers are generated at a rate of 1 billion, or about 230, per second.

The legacy LCG with a single stream of length 232 has 8 substreams of length 229.
Each will run for 0.5 seconds, and the full cycle runs for 4 seconds.

One year ≈ 602 · 24 · 365 ≈ 224.91 ≈ 225 seconds.

For T258: a substream of length 286 will run for ∼ 286−30−25 = 231 ≈ 2 billion years,
a stream of length 2172 will run for ∼ 2172−30−25 = 2117 ≈ 1026 billion years, and a
full cycle of length 2258 will run for ∼ 2258−30−25 = 2203 ≈ 1052 billion years.

Brute force verification is impractical. The numbers are large:
2258 = 463168356949264781694283940034751631413079938662562256157830336031652518559744 ≈ 5 × 1077

P = 463168356949050750352076184268918090343706927944462529355293134289296410279935 ≈ 5 × 1077

2258 − P = 214031342207755765833541069373010718099726802537201742356108279809 ≈ 2 × 1065

2172 = 5986310706507378352962293074805895248510699696029696 ≈ 6 × 1051

286 = 77371252455336267181195264 ≈ 8 × 1025

P < 2258 so the number of full streams is not 286 but floor(P/2172) = 77371252455300513717551104 ≈ 8 × 1025

number of streams “lost” = 35753463644160 ≈ 4 × 1013

A useful approach to verification follows from SCR 2138, Section 7.

5. SCR 1049–1050
This following is equivalent to the initial 2008 implementation of T258 in MUVES
as presented in SCR 1049 “Replace existing Uniform random number generator”
and SCR 1050 “Provide independent RNG streams for DMUVES”.

The constructor saves the seed and initializes the system.

rng::rng(uz seed) {

this->seed = seed;

init();

}

The initializer seeds the LFSRs and invokes a single transition.

rng& rng::init() {

seedx();

t();

return *this;

}

17

Approved for public release; distribution is unlimited.

The original seeding routine used a single seed integer and an auxiliary LCG of the
form xi+1 = c · xi to obtain 5 uniformly-distributed seed values.

void rng::seedx() {

uz c = 69069;

s[0] = c*seed; if(s[0] < 2) s[0] += 2u;

s[1] = c*s[0]; if(s[1] < 512) s[1] += 512u;

s[2] = c*s[1]; if(s[2] < 4096) s[2] += 4096u;

s[3] = c*s[2]; if(s[3] < 131072) s[3] += 131072u;

s[4] = c*s[3]; if(s[4] < 8388608) s[4] += 8388608u;

}

The system uses an array of 65 polynomials “const uz rng::JP[65][5]” for jumps
of 2p where p = (86,172,173,174, . . . ,233,234,235 = 172 + 63). MUVES uses
4 independent substreams (for variables, separated by 286) in each thread stream
(separated by 2172).

Generators for stream k with 0 < k < 264 are obtained by applying k large jumps
of size 2172 using the binary decomposition of k followed by small 286 jumps for
substreams. Note that if the nth bit bn of k =

∑63
n=0 bn2n is nonzero, then JP[n+1]

can be used to advance each LFSR by 2171+n = 2n · 2172 for total offset of k · 2172.
This is efficient even for large k, unlike iterating the 2172 jump k times. Then each
substream i is advanced by i · 286 to obtain offsets of k · 2172 + i · 286 for i = 0,1,2,3.

6. SCR 1908
In 2014, SCR 1908 “Changes to Tausworthe T258 Random Number Generator”
realized these modifications:

Description: The seeding routine in T258 is more restrictive than necessary and it

makes a call to the generator itself before returning. This prevents setting the five

states to the same seed and making a call to the generator introduces confusion

when comparing to the standalone behind-armor debris model.

and the document scr.pdf referenced in the SCR contains:

• Seeding routine is more restrictive than necessary, in two respects:

– Seed is multiplied by 69069 each time an internal state is set.

– Makes a call to the RNG itself before the seeding procedure returns.

The current seeding routine (see Figure 1 [omitted]) multiplies the seed by 69069

18

Approved for public release; distribution is unlimited.

each time that the five states of the RNG are set. There is no need to do this, and it

prevents us from setting the five states to the same seed.

The initialization method implemented by SCR 1908 is equivalent to:

rng& rng::init() {

seedx();

return *this;

}

The seeding method implemented by SCR 1908 is equivalent to:

void rng::seedx() {

s[0] = seed; if(s[0] < 2) s[0] += 2u;

s[1] = seed; if(s[1] < 512) s[1] += 512u;

s[2] = seed; if(s[2] < 4096) s[2] += 4096u;

s[3] = seed; if(s[3] < 131072) s[3] += 131072u;

s[4] = seed; if(s[4] < 8388608) s[4] += 8388608u;

}

6.1 Consequences
6.1.1 Jump Computation Failure
Omission of the valid initial state criterion of Section 4.3 (by removing the initial-
ization call to the RNG) introduces the problems presented in that section. This
includes the failure of jump computation even for correct jump polynomials.

The requirement for statistically independent random substreams across all streams
is essential for the validity of the simulation. This is obtained by partitioning the
overall cycle into non-overlapping segments, guaranteed by correct jump compu-
tations. When the jump computations fail, the resulting possible overlap makes the
claim of independence invalid.

6.1.2 Stream independence Failure
Use of the same single seed for all 5 LFSRs (instead of uniform random seeds
derived from a single value) introduces another problem.

Put simply, if you run a simulation with seed x one day, and seed x + 1 the next
day, the results will not be independent (as is required for a random sample). Se-
quentially seeded cycles are not independent. If the seeds themselves are generated
by some random process (clock time, process id, /dev/random, /dev/urandom, ra-
diation, etc) this is likely not an issue. But if a human needs 3 seeds for a random

19

Approved for public release; distribution is unlimited.

sample of runs, she/he just might pick something like 666, 667, and 668. Then the
following problem manifests.

A number is Borel normal in base r if every sequence of k symbols in the letters
0,1, . . . ,r − 1 occurs in the base-r expansion of the given number with the expected
frequency r−k . Uniform random numbers are Borel normal.

Let x be a 64-bit (r = 2) uniform random integer and b(x) = the number of 1s in x.
Then b(x) ∼ B(64,1/2), where B(n,p) is the binomial distribution and q = 1 − p.
Here, n = 64 and p = q = 1/2. Then E b(x) = np = 32 and Var b(x) = npq = 16.

If (xi)∞i=1, is a sequence of such x, then the b(xi) are iid B(n,p), asymptotically
normal

b(xi) ∼ N (np,npq) (28)

If (x ji)∞i=1 for j = 1, . . . , k are k such sequences, then the Si = {x ji : j = 1. . . . , k}
are iid random samples of size k from B(n,p). Then the sample means mi =

mean(Si) = 1
k
∑k

j=1 b(x ji) are iid asymptotically normal

mi ∼ N
(
np,

npq
k

)
. (29)

and the sample variances vi = var(Si) = 1
k
∑k

j=1

(
b(x ji) − mi

)2
are iid asymptoti-

cally normal

vi ∼ N
(
npq, (npq)2

(
2

k − 1
+
κ

k

))
(30)

where κ is the excess kurtosis

κ =
1 − 6pq

npq
. (31)

Graphs follow for i = 1, . . . ,500 and k = 1000, where k sequential seeds were
chosen. First we see the series results for seeds 0 through 999, offset 0, to the same
scale in Fig. 1 and with the correct Q method magnified to show detail in Fig. 2.
Then in Figs. 3 and 4 we see the same presentation for an arbitrary offset so, for
seeds so through so + 999. Then, without regard to the series, we see the cumulative
distribution functions (CDFs) for offset 0 in Fig. 5 and offset so in Fig. 6.

20

Approved for public release; distribution is unlimited.

0 100 200 300 400 500

10

20

30

40

M: b, s = 0 + s0

s0 = 0x0

j = 0

0 100 200 300 400 500

25

30

35

40

M: m, s = 0 : 999 + s0

0 100 200 300 400 500

0

10

20

30

40

M: v, s = 0 : 999 + s0

0 100 200 300 400 500

10

20

30

40

Q: b, s = 0 + s0

0 100 200 300 400 500

25

30

35

40

Q: m, s = 0 : 999 + s0

0 100 200 300 400 500

0

10

20

30

40

Q: v, s = 0 : 999 + s0

Fig. 1 b series, no offset, same scale

21

Approved for public release; distribution is unlimited.

0 100 200 300 400 500

10

20

30

40

M: b, s = 0 + s0

s0 = 0x0

j = 0

0 100 200 300 400 500

25

30

35

40

M: m, s = 0 : 999 + s0

0 100 200 300 400 500

0

10

20

30

40

M: v, s = 0 : 999 + s0

0 100 200 300 400 500

20

25

30

35

40

45

Q: b, s = 0 + s0

0 100 200 300 400 500

31.8

32.0

32.2

32.4

Q: m, s = 0 : 999 + s0

0 100 200 300 400 500

14

15

16

17

18

Q: v, s = 0 : 999 + s0

Fig. 2 b series, no offset, detail

22

Approved for public release; distribution is unlimited.

0 100 200 300 400 500

20

25

30

35

40

45

M: b, s = 0 + s0

s0 = 0x682c58d6ace0605b

j = 2^0x140c69de09b07d42

0 100 200 300 400 500

24

26

28

30

32

34

36

38

M: m, s = 0 : 999 + s0

0 100 200 300 400 500

0

10

20

30

40

50

M: v, s = 0 : 999 + s0

0 100 200 300 400 500

20

25

30

35

40

45

Q: b, s = 0 + s0

0 100 200 300 400 500

24

26

28

30

32

34

36

38

Q: m, s = 0 : 999 + s0

0 100 200 300 400 500

0

10

20

30

40

50

Q: v, s = 0 : 999 + s0

Fig. 3 b series, arbitrary offset, same scale

23

Approved for public release; distribution is unlimited.

0 100 200 300 400 500

20

25

30

35

40

45

M: b, s = 0 + s0

s0 = 0x682c58d6ace0605b

j = 2^0x140c69de09b07d42

0 100 200 300 400 500

24

26

28

30

32

34

36

38

M: m, s = 0 : 999 + s0

0 100 200 300 400 500

0

10

20

30

40

50

M: v, s = 0 : 999 + s0

0 100 200 300 400 500

20

25

30

35

40

45

Q: b, s = 0 + s0

0 100 200 300 400 500

31.6

31.8

32.0

32.2

32.4

32.6

Q: m, s = 0 : 999 + s0

0 100 200 300 400 500

14

15

16

17

18

Q: v, s = 0 : 999 + s0

Fig. 4 b series, arbitrary offset, detail

24

Approved for public release; distribution is unlimited.

10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

b

F

M
Q
true

20 25 30 35 40

0.0

0.2

0.4

0.6

0.8

1.0

b

F

25 30 35 40

0.0

0.2

0.4

0.6

0.8

1.0

m

F

31.7 31.8 31.9 32.0 32.1 32.2 32.3 32.4

0.0

0.2

0.4

0.6

0.8

1.0

m

F

10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

v

F

14 15 16 17 18

0.0

0.2

0.4

0.6

0.8

1.0

v

F

Fig. 5 b, m, v CDFs, no offset

25

Approved for public release; distribution is unlimited.

20 25 30 35 40 45

0.0

0.2

0.4

0.6

0.8

1.0

b

F

M
Q
true

25 30 35 40

0.0

0.2

0.4

0.6

0.8

1.0

b

F

26 28 30 32 34 36

0.0

0.2

0.4

0.6

0.8

1.0

m

F

31.8 32.0 32.2 32.4

0.0

0.2

0.4

0.6

0.8

1.0

m

F

10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

v

F

15 16 17 18

0.0

0.2

0.4

0.6

0.8

1.0

v

F

Fig. 6 b, m, v CDFs, arbitrary offset

26

Approved for public release; distribution is unlimited.

7. SCR 2138
In 2015, SCR 2138 “MUVES Random Number Generator initialization correction”
remediated the effects of SCR 1908. The initialization generator call was reinstated
to assure correct jump computations and statistical independence of everything.

rng& rng::init() {

seedx();

t();

return *this;

}

An improved seeding scheme uses a better LCG that SCR 1049, available in L’Ecuyer.5

This reestablishes the independence of sequentially-seeded streams lost in SCR
1908.

void rng::seedx() { // set seed

uz c = 0x27bb2ee687b0b0fd, d = 0x891087b8e3b70cb1;

do s[0] = c*seed+d; while(s[0] < 0x000002);

do s[1] = c*s[0]+d; while(s[1] < 0x000200);

do s[2] = c*s[1]+d; while(s[2] < 0x001000);

do s[3] = c*s[2]+d; while(s[3] < 0x020000);

do s[4] = c*s[3]+d; while(s[4] < 0x800000);

}

The final element of SCR 2138 implements an improved algorithm for jump com-
putation based on the identity of Section 7.1. Previous computations are a “special
case” of the new algorithm, in that the results are identical. The old algorithm could
compute jumps of size 286 and k2172 for k = 0, . . . ,264 − 1. The new algorithm is
more transparent but capable of jumps k2p for both p and k in {0, . . . ,264 − 1}.

In either case, suppose that t() is a single-step state transition and that j (p) advances
the RNG state by 2p steps. With the old algorithm, one would check that either 286

applications of t() or one application of j (86) to some initial state results in the
same final state. At a rate of 1 billion per second this would take 2 billion years.
For j (172), this would take 1035 years. A major benefit of the new formulation
is that the computations can be verified more efficiently due to the availability of
arbitrary j (p). One need only check that t() and j (0) give the same state and for p =

1,2,3, . . . ,pmax that 2 applications of j (p − 1) give the same state as 1 application
of j (p), since 2 · 2p−1 = 2p. For pmax = 236 it takes about 5 milliseconds to check
that any such j (p) is correct.

27

Approved for public release; distribution is unlimited.

7.1 Identity
The LFSRs in T258 generated by polynomials of the form P(z) = zk + zq + 1 in
blocks of size s have periods m = 2k − 1. By the division algorithm a jump size
of 2p can be written as 2p = Qm + 2p%m for integer Q, thus 2p and 2p%m are the
same jump.

In fact, 2p%m = 2p%k , so only the jumps 2p for p = 0,1,2,3, . . . , k − 1 for each
LFSR are required to compute a T258 jump of 2p for any p > 0.

Formally, we assert that

2p%(2k − 1) = 2p%k for k > 2 and p > 0 . (32)

Proof:

If p < k then 2p < m and 2p%m = 2p = 2p%k .
If p = k then 2p = m + 1 and 2p%m = 1 = 2p%k .
Suppose the claim holds for some p > k and all p′ < p, and consider p + 1:

2p+1%m = (2 · 2p)%m = ((2%m) · (2p%m))%m

= (2 · 2p%k)%m, by induction, as it holds for p

= (2p%k+1)%m = 2(p%k+1)%k , by induction, as p%k + 1 6 k 6 p

= 2(p%k+1%k)%k = 2(p+1)%k . QED

If k = 1, then m = 2k −1 = 1 and 2p%1 = 0 , 2p%1 = 20 = 1. So k > 2 is required.
Note that various steps in the proof also rely on k > 1.

7.2 Implementation
T258 characteristic polynomial degrees are

const int rng::CPd[5] = { 63, 55, 52, 47, 41 };

Only the polynomials for 20 through 262, 254, 251, 246, and 240, are required for the
5 LFSRs, respectively. Then any jump 2p for p = 0, . . . ,264−1 can be computed by

rng& rng::jump(uz p) { // jump 2^p

uz i, j, a[5] = { 0 };

for(i=1; i; i<<=1, t())

for(j=0; j<5; j++)

if(JP[p % CPd[j]][j] & i) a[j] ^= s[j];

memcpy(s, a, 5*sizeof(uz));

return *this;

28

Approved for public release; distribution is unlimited.

}

Any jump of size k2p can be computed by

rng& rng::jumpk(uz k, uz p) { // jump k*2^p

for(; k; k>>=1, p++) if(k & 1) jump(p);

return *this;

}

which uses the binary representations k =
∑m

i=0 bi2i = bm2m + · · · + b020 and
k2p =

∑m
i=0 bi2i+p = bm2m+p + · · · + b02p.

Increments for small (variable) and large (stream) jumps are

static const int JS = 86; // log_2 (small jump)

static const int JL = 172; // log_2 (large jump)

Stream k can be set up by

rng *z[4];

for(int i=0; i<4; i++) {

z[i] = new rng(seed);

z[i]->jump(k, rng::JL).jump(i, rng::JS);

}

7.3 Jump Verification
These operators compare T258 state arrays.

bool rng::operator!=(const rng &w) { // state inequality

uz e = 0;

for(int i=0; i<5; i++) e |= s[i] ^ w.s[i];

return e;

}

bool rng::operator==(const rng &w) { // state equality

return ! (*this != w);

}

Then success of the following code verifies jump computations for the given seed
for all jumps 2p with p = 0,1,2,3, . . . ,pmax.

void Vjump(uz seed, uz pmax) { // inductive jump verification

rng z0(seed), z1(seed); // T258 objects, same state

cout << "Vjump(" << Px(seed) << ", " << dec << pmax << "): ";

29

Approved for public release; distribution is unlimited.

if(z0.jump(0) != z1.t()) { // base

cerr << "fail base check" << endl;

exit(1);

}

for(uz p=1; p<=pmax; p++) // induction

if(z0.init().jump(p) != z1.init().jump(p-1).jump(p-1)) {

cerr << "fail induction check, p=" << dec << p << endl;

exit(1);

}

cout << "for all p = 0:" << pmax << " jump(p) == t^(2^p)" << endl;

}

This checks that jump(0) is a single transition t() and inductively that jump(p)

is equivalent to 2 applications of jump(p-1), as 2p = 2 · 2p−1. Upon success, this
establishes that jump(p) implements a jump of 2p for p = 0,1,2,3, . . . ,pmax.

8. SCR 2142
Released in 2015, SCR 2142 “Modernize Rn package to C++ and STL use” reim-
plements the RNG system in C++ and provides code cleanup.

The redundant old jump code (available as an option in SCR 2138) was removed,
leaving only the new SCR 2138 code. From the SCR text:

For SCR2138, new jumping code was added, but the old jumping code was left in

place because it was not understood that the new jumping code is able to provide

the same functionality. The old jump code will be removed as part of this SCR as

the Rn code is cleaned up.

SCR 2142 also suggests exploiting the Standard Template Library (STL):

Note that the C++ STL contains classes for random number generation and it is

possible to adapt the T258 RNG (as a random number engine) for this use. The C++

STL contains a complete set of random distributions and it is highly desirable to

use these instead of reimplementing all the distributions in MUVES when standard

versions already exist. Therefore, use of the STL should be investigated as part of

this SCR (both SCR2061 and SCR2105 will require C++11 and the C++11 STL).

The new C++11 standard library random number generation feature is exposed

30

Approved for public release; distribution is unlimited.

by including the <random> header. At this time, the MUVES development and
distributions platforms do not provide C++11 compilers. So incorporation of the
RNG system into the C++11 <random> library framework has been deferred.

9. Demonstration and Verification
The code t258.h in Section 9.1 is a complete C++ class implementation of T258
equivalent to the current SCR 2138 MUVES version with seeding, initialization,
state transition t(), integer and real U (0,1) generators, and functions jump(p) and
jumpk(k,p) for jumps of 2p and k2p, respectively, where p and k are 64-bit un-
signed integers in the range 0, . . . ,264 − 1.

The driver code in Section 9.2 implements the class in a working program. The
driver uses a single seed, 0xd8940e83ec602c7b = 15606114568514841723.

The function Vtab generates tables of integer and real output to demonstrate the
stream and substream jumps used in MUVES. The resulting tables on pages 32
and 33 were provided to MUVES developers as a sanity check and were incorpo-
rated into MUVES unit testing.

The function Vjump verifies jump computation for p = 0, . . . ,236. The largest jump
possible in the current MUVES implementation has k = 264 − 1 and p = 172, so
k2p < 264 · 2172 = 2236. On success, one sees

Vjump(0xd8940e83ec602c7b, 236): for all p = 0:236 jump(p) == t^(2^p)

On failure, one sees either

Vjump(0xd8940e83ec602c7b, 236): fail base check

if jump(0) is not the same as t(), or something like

Vjump(0xd8940e83ec602c7b, 236): fail induction check, p=7

if jump(p).jump(p) is not the same as jump(p+1) for some p. The latter occurs if
the transition call is removed from the initialization, as in SCR 1908.

Of course, success for a single seed is not proof. But similar code had no failure
with billions of different random seeds, which is not proof either but provides reas-
surance that things are working.

31

Approved for public release; distribution is unlimited.

Jump demonstration table, integer:

Vtab(0xd8940e83ec602c7b, uz): jump = J*2^172 + K*2^86

J = 0
n K = 0 K = 1 K = 2 K = 3
1 0xc16e6cacb10aafb7 0x8698d7ee73267dfd 0x3b24e9553fe2ab49 0xb501e17f9a22cb5b
2 0x4197d305ac8d14d7 0xa6ba3076faf9803d 0x377b2a9c373cd544 0x51a15d9dfc1a0fb9
3 0xad851fdfedb01c77 0xffa700c1f6894ab6 0x1c8af1eff5a013e0 0x641f61b7c5206628
4 0xb1c4c1d91fd598d0 0x4b603c781fcc564a 0x4d016dac0e18f0cf 0xc7b5e5cfb78eca78
5 0xe15f23003cf4a5bd 0x25ed9bbe1d862f17 0xfb244937ce181286 0xc354f0d48b67a904

J = 1
n K = 0 K = 1 K = 2 K = 3
1 0x4c6be74635dd95f9 0x8da677e1d0c102fc 0x5f94da92d55163fc 0xba2853e0ae2053ed
2 0x37a4ffc68991c454 0x947f071f49deec2a 0x273c05a49c944ba5 0x1c21f190185d6326
3 0xb9f3d6e556357739 0xee429bf79386d48a 0x435a62d0a13dd575 0x55622bd6b0745921
4 0x5923006254cd0202 0x3a0987eaf69515c0 0xd95a9d3985026c3a 0x8a0a27de969e2d40
5 0xbf14071ad4ff5297 0xe93c1daf844af7cf 0x9032a81041006403 0x5213f9f085bd25e8

J = 2
n K = 0 K = 1 K = 2 K = 3
1 0x71590ce85a42d74d 0x97699306050bd514 0x8d571a13e87d55a9 0x4f21c38777b5f1bb
2 0xde5ff97d8853eea7 0xc221a247176e77d4 0xda7586557e84eaa1 0x64330c2ebf01fe85
3 0x280615a8b54284f1 0x5d33a5b5585a7364 0xa25f2c70d63f7e4e 0x861a46a5ff29b9e0
4 0xa5f63cacd6e41d91 0x2c0bc7999bb29ff3 0x617c53df2a932bc8 0x66992fc9c1a53027
5 0xa3c79c2c534b27b4 0x2221ba242669cfcb 0x2fdd232165791d1d 0x3888d26261dce6c2

J = 3
n K = 0 K = 1 K = 2 K = 3
1 0xff71ca0b732c4949 0x867d129cd858c058 0xa6ec51930d817e66 0x9dabc7e737ed494f
2 0xbc77a72aaf89753e 0x9d61d14749155805 0x588ae0b6b281981f 0xc7bc1546bc2309c3
3 0x2de469f3f7ddede3 0x1f4e610a2f7263e0 0xd71668e4417bdffc 0x766dbeb7f102b3a7
4 0xff672a0c36125e2c 0xb10593560a59ecd2 0x152646fe75348e59 0xf63d8f4fe717a0b9
5 0x9159bb906bebcb03 0xa7a301f2ed7fec8d 0xf4f791cbf9bc6989 0xdfbb782b73b6ae5d

J = 4
n K = 0 K = 1 K = 2 K = 3
1 0xd9f9bdddff303202 0x0173a3a4f2254c51 0xbfd8aaffd19a665e 0x58a927c37a3602d3
2 0x86d7897db155a745 0x5bdf4b8032d914f9 0x4e09bc87a5c7922c 0x83c947bdc7083b94
3 0xe819eb79b2aa8d0a 0xa8a74e7e6d0c1038 0x505701b38a6bfb90 0x62c86cafc75dc91c
4 0x14c91fcd7c608bfc 0xdb8f97503a9d1574 0x562a180930c36f54 0xb102e6e501b83485
5 0x52785e23c9d880ed 0xbbfc72e609c96ba3 0x4e5031d2d4a0f437 0x9e43932dfac8e9dc

J = 5
n K = 0 K = 1 K = 2 K = 3
1 0x0c14a3a5d302c989 0x660abd0396ef14a3 0xaf60b1affb3e53a6 0x7ece213ba1ec8811
2 0x8efd1ff4d7e1941b 0xb743ff3460f62e9f 0xa1507842e9da2f5d 0x628c35d2c5c7724f
3 0x623b009e10cc32fe 0x93d3202a8536b686 0xcecfe9f154120adb 0x59969f88b7901893
4 0xe3030e94754a8c27 0x2893a81ecb8c6aa7 0x249eb96507002c4f 0xb28a90711088ba68
5 0xe895e1af53cae98e 0x4a19e122b28447be 0x9d92eaad875e312f 0x7227913afc65bb4a

J = 6
n K = 0 K = 1 K = 2 K = 3
1 0xad7f6af0771f42d0 0xa673517c3e97a375 0xeae617e06dcdfcd2 0x16a04a9eee343931
2 0x7152e34f71b13bdf 0xbf549048b46c344b 0x132d592b77eecfaa 0x7a177d8c7427d713
3 0xc91be73b58418123 0xad0064cc27aab021 0xfd91c38a7805f8d7 0x82f297163077e680
4 0x4e55e470f36f030c 0x500ea6baf0d3b074 0x6ea259bd74ef380c 0x5b1f1259957dc675
5 0x085942e71dc8af6b 0xfb5fa80c2bb01aaf 0x92679c69aaf343ff 0xb74e8d82a30ec277

J = 7
n K = 0 K = 1 K = 2 K = 3
1 0xfbc1292fc680a416 0xe45087ee40f56993 0xef6a5b85ba23a884 0xc0e725b06d4e72fb
2 0x6d9b1af20461b9bc 0x2c4566e9fde33783 0x38e0e42505739ea7 0x90b024dc86178651
3 0x631011d91bf6b2e9 0x75987bb9443e5261 0x6fe6183cf784ebd0 0xed8b48c5ce0a240f
4 0xff48c5924e2590a4 0x6d37fcce4dad574c 0x916a0c91c447963a 0x9515183807fc0f59
5 0x6e62c17ab7b53e40 0x92f288c5f7ec56a6 0x4f119d1ea6a778ea 0xc8700e32f6366368

32

Approved for public release; distribution is unlimited.

Jump demonstration table, real:

Vtab(0xd8940e83ec602c7b, u01): jump = J*2^172 + K*2^86

J = 0
n K = 0 K = 1 K = 2 K = 3
1 0.7555911943063999 0.5257697064545485 0.2310319741371908 0.7070599495438145
2 0.2562229050495726 0.6512785234908502 0.2167231208215867 0.3188684950547228
3 0.6778125688267099 0.9986420129339751 0.1114951334799346 0.3911038468987740
4 0.6944085269058945 0.2944371979972840 0.3008030457550352 0.7801192886468541
5 0.8803579211789434 0.1481568659924269 0.9810224305384454 0.7630148428828806

J = 1
n K = 0 K = 1 K = 2 K = 3
1 0.2985214754497660 0.5533213545138587 0.3733650787810965 0.7271778510604474
2 0.2173614368162538 0.5800632907283859 0.1532596136936074 0.1098929383082257
3 0.7263769445327932 0.9307038764414088 0.2630979308462351 0.3335292243140925
4 0.3481903305117164 0.2267079304352431 0.8490389123371728 0.5392174642971602
5 0.7463993492610801 0.9110735467441307 0.5632729568178561 0.3206173145497258

J = 2
n K = 0 K = 1 K = 2 K = 3
1 0.4427650515811010 0.5914546861359178 0.5521103190044319 0.3091089444858068
2 0.8686519557453064 0.7583257125438025 0.8533557852483856 0.3914039243818549
3 0.1563428437123182 0.3640693252312788 0.6342647338371971 0.5238384394898848
4 0.6482885286303744 0.1720547437686925 0.3808033389892215 0.4007749431199457
5 0.6397645576683257 0.1333271349198305 0.1869680363210801 0.2208377351943116

J = 3
n K = 0 K = 1 K = 2 K = 3
1 0.9978300359681934 0.5253459580347650 0.6520434364333648 0.6159024180887417
2 0.7362007598126519 0.6147738265072652 0.3458691068685823 0.7802136705105448
3 0.1792665691972314 0.1222897195688772 0.8401856953873755 0.4626120757175254
4 0.9976679115116637 0.6914913258609442 0.0826153155550903 0.9618768282008134
5 0.5677754619209018 0.6548310487828527 0.9569026110636841 0.8739543062290190

J = 4
n K = 0 K = 1 K = 2 K = 3
1 0.8514670054420896 0.0056707647037416 0.7493998407895588 0.3463311054458345
2 0.5267263347498869 0.3588759601578639 0.3048360663576928 0.5147900427173518
3 0.9066455051530885 0.6588028963715689 0.3138276160556613 0.3858707360408210
4 0.0811939121889528 0.8576597758170588 0.3365798017919254 0.6914505299662046
5 0.3221491658567590 0.7343208133332034 0.3059111728404138 0.6182186114554359

J = 5
n K = 0 K = 1 K = 2 K = 3
1 0.0471899299473179 0.3986013540042530 0.6850691847459924 0.4953327913844295
2 0.5585498783838203 0.7158813002469847 0.6301341212618828 0.3849519385892373
3 0.3837128053572065 0.5774402717408644 0.8078600134068169 0.3499545773298113
4 0.8867653953978253 0.1585030627425553 0.1430469390534205 0.6974268222843730
5 0.9085370114369585 0.2894573888502388 0.6155230210928202 0.4459162491806613

J = 6
n K = 0 K = 1 K = 2 K = 3
1 0.6777254902909791 0.6501971176463415 0.9175734446451357 0.0883833539976003
2 0.4426710194545124 0.7473840882779974 0.0749107104419934 0.4769209354309674
3 0.7855820197949068 0.6757872579980055 0.9905054295595831 0.5115141324208419
4 0.3059981132277549 0.3127235609434382 0.4321647727528529 0.3559428662024322
5 0.0326120199440846 0.9819283513749614 0.5718934782007183 0.7160423702180720

J = 7
n K = 0 K = 1 K = 2 K = 3
1 0.9834161512030755 0.8918538052248174 0.9352166367990679 0.7535270267229011
2 0.4281479683744526 0.1729339905995289 0.2221815672287007 0.5651877439869093
3 0.3869639544536436 0.4593579604445435 0.4371047161908056 0.9279065592691400
4 0.9972041589918688 0.4266355518026803 0.5680244308353208 0.5823531281275650
5 0.4311943935969865 0.5740132792779360 0.3088625144797826 0.7829598307054879

33

Approved for public release; distribution is unlimited.

9.1 T258 Class Code
typedef uint64_t uz; // 64-bit unsigned integer

class rng { // T258
public:

rng(uz seed); // constructor
rng& init(); // (re)initialize
rng& t(); // state transition
rng& jump(uz p); // jump 2^p
rng& jumpk(uz k, uz p); // jump k*2^p
uz gen(); // integer generator
double u01(); // u(0,1) generator
static const int JS = 86; // log_2 (small jump)
static const int JL = 172; // log_2 (large jump)
bool operator!=(const rng& w); // state comparison
bool operator==(const rng& w); // state comparison

private:
uz s[5]; // LFSR state array
uz seed; // this.seed
void seedx(void); // set seed
static const int CPd[5]; // CP degrees
static const uz JP[63][5]; // jump polynomials

};

rng::rng(uz seed) { // constructor
this->seed = seed;
init();

}

rng& rng::init() { // initialize
seedx();
t();
return *this;

}

void rng::seedx() { // set LFSR seeds
uz c = 0x27bb2ee687b0b0fd, d = 0x891087b8e3b70cb1;
do s[0] = c*seed+d; while(s[0] < 0x000002);
do s[1] = c*s[0]+d; while(s[1] < 0x000200);
do s[2] = c*s[1]+d; while(s[2] < 0x001000);
do s[3] = c*s[2]+d; while(s[3] < 0x020000);
do s[4] = c*s[3]+d; while(s[4] < 0x800000);

}

rng& rng::t() { // T258: C s q k-s // k
s[0] = ((s[0] & -0x000002) << 10) ^ (((s[0] << 1) ^ s[0]) >> 53); // 63
s[1] = ((s[1] & -0x000200) << 5) ^ (((s[1] << 24) ^ s[1]) >> 50); // 55
s[2] = ((s[2] & -0x001000) << 29) ^ (((s[2] << 3) ^ s[2]) >> 23); // 52
s[3] = ((s[3] & -0x020000) << 23) ^ (((s[3] << 5) ^ s[3]) >> 24); // 47
s[4] = ((s[4] & -0x800000) << 8) ^ (((s[4] << 3) ^ s[4]) >> 33); // 41
return *this;

}

rng& rng::jump(uz p) { // jump 2^p
uz i, j, a[5] = { 0 };
for(i=1; i; i<<=1, t())

for(j=0; j<5; j++)
if(JP[p % CPd[j]][j] & i) a[j] ^= s[j];

memcpy(s, a, 5*sizeof(uz));
return *this;

}

rng& rng::jumpk(uz k, uz p) { // jump k*2^p
for(; k; k>>=1, p++) if(k & 1) jump(p);
return *this;

}

uz rng::gen() { // 64-bit integer
t();
return s[0] ^ s[1] ^ s[2] ^ s[3] ^ s[4];

}

double rng::u01() { // U(0,1)
uz z;
const static double d = 1.0/(1UL<<53);
do z = gen() >> 11; while(!z);
return d * z;

}

34

Approved for public release; distribution is unlimited.

bool rng::operator!=(const rng &w) { // state inequality
uz e = 0;
for(int i=0; i<5; i++) e |= s[i] ^ w.s[i];
return e;

}

bool rng::operator==(const rng &w) { // state equality
return ! (*this != w);

}

const int rng::CPd[5] = { 63, 55, 52, 47, 41 }; // CP degrees

const uz rng::JP[63][5] = { // JP[p][i] = 2^p jump polynomial for LFSR[i]
{0x0000000000000002, 0x00000000000002, 0x0000000000002, 0x000000000002, 0x00000000002},
{0x0000000000000004, 0x00000000000004, 0x0000000000004, 0x000000000004, 0x00000000004},
{0x0000000000000010, 0x00000000000010, 0x0000000000010, 0x000000000010, 0x00000000010},
{0x0000000000000100, 0x00000000000100, 0x0000000000100, 0x000000000100, 0x00000000100},
{0x0000000000010000, 0x00000000010000, 0x0000000010000, 0x000000010000, 0x00000010000},
{0x0000000100000000, 0x00000100000000, 0x0000100000000, 0x000100000000, 0x00100000000},
{0x0000008000004006, 0x20000200100200, 0x080805414d000, 0x02009262d390, 0x00004800000},
{0x0020000000018014, 0x20050881500001, 0x5209f6b064797, 0x54af12d5c26c, 0x00000004920},
{0x00001801c00c0110, 0x0280d09c100019, 0x0c54a1e621499, 0x3d96aeb24aa5, 0x00010410400},
{0x700000c007816105, 0x1c8104908c00c1, 0xb05ba8446e76e, 0x3081fec2623c, 0x00100148048},
{0x7e3fe03e0000e011, 0x002631e50851cf, 0xbba8fed05eb47, 0x702b58a6b6e1, 0x11044801040},
{0x7ff81f40fbf06105, 0x0d8e231d149309, 0x5c23bbbc5da56, 0x24083a6fe8b7, 0x08481485932},
{0x0030000000008012, 0x61b24de97c0da3, 0xed52c8defa3df, 0x5065b92cd5bc, 0x160586101cc},
{0x00001e00e00f0104, 0x00aa994928aec9, 0xfb065085eac50, 0x77e8c17a05f8, 0x0db004cf018},
{0x7e00004007f92013, 0x4ca1b5574dd946, 0x288336225032a, 0x0a0b2fb86260, 0x13de3800108},
{0x7fe7fffefc006105, 0x23990533099a2d, 0x6e57aa7334925, 0x60057f19fef8, 0x097edfb17f2},
{0x0007f8ffc3fd6016, 0x275a2982e86c13, 0x1263bf9acdbb6, 0x2a7d2426007b, 0x061deee38fe},
{0x702fffbefc7e2115, 0x37e54836f269e1, 0x4bfe07b195bb6, 0x017bbf224b71, 0x00e00adae2e},
{0x01f00681200dc116, 0x57eb3124fac097, 0x167a720daf502, 0x7311b420e038, 0x0503e540566},
{0x0e27fefee387c112, 0x04b5b746efc071, 0xc707bfd0e15a6, 0x516e04fd38cc, 0x15c8006ee5c},
{0x7fd7f8ffc40b6103, 0x08a943bd59e7bf, 0xb0e2f0e8a5511, 0x50f342c7f5dd, 0x0d9bd741142},
{0x0fc7e63f238c2004, 0x19067d8a48d883, 0x2862328837c1c, 0x70ead9760ba8, 0x07da4b6fcde},
{0x0ff800000077e012, 0x1172e358700271, 0x63d6501573b4d, 0x7775288793a0, 0x14bb8e21866},
{0x01ffe03f03ffc104, 0x30a1f72072a741, 0xa4c006bb09430, 0x4f2d355c7f98, 0x0cd36f7b57c},
{0x0000000000012012, 0x5edc4fa65cd612, 0xe88c757d05b63, 0x0c8b487d8528, 0x07c2987ce2a},
{0x0000000104000104, 0x7f0672769e600c, 0x234ecd09c6285, 0x38310a7ff929, 0x04ab84721e4},
{0x0010008000014016, 0x4a271b24a15c9a, 0x5825170abee2c, 0x4860388bc30a, 0x05c3736f458},
{0x0020060120028114, 0x1733ede9d1dfa0, 0x2816247ec16f1, 0x46447123e58f, 0x159bd06cfd2},
{0x0e001881c0754116, 0x3a35cab1e5e287, 0xaa7dad2018eed, 0x0ca6a442abe4, 0x0d9f5e2bd96},
{0x71d81f01fb80e111, 0x48d1a4f8d0e015, 0x43db4dee649bb, 0x2940aa4aea57, 0x169e0af8cee},
{0x01c00700380ca104, 0x5adaaead5e39a1, 0x5e5d41686b186, 0x2b5379111b18, 0x08e65aa5574},
{0x0fc7e07f078f0010, 0x680a74c2db72ab, 0xe1e7e9e257df7, 0x70d5e9111b6e, 0x1656b4b58a2},
{0x01e00000000f8102, 0x526b6108440381, 0x145917717f794, 0x21735e75c963, 0x09f5d9b72de},
{0x0007f87fc3fd0004, 0x10d8b20cc2d16d, 0x1a079270e423e, 0x598f11394622, 0x060ebc9bcf4},
{0x700fffbef87fa011, 0x6ce992764e3e06, 0xeed334eb23c6f, 0x5f36f89389ba, 0x01b442b62f8},
{0x01e01e80e000c106, 0x1251a9fa5ac371, 0x1e0d55467df96, 0x06790d966652, 0x040a2cc1d52},
{0x7e27f83fc404a017, 0x75bc1fd19772e4, 0x095ae04d250fb, 0x788a4bb5b473, 0x0180063026c},
{0x0fe81840c473c114, 0x0ee9c38438b036, 0x813bec99acd9d, 0x7f5d9d9bfe68, 0x000a004140a},
{0x71e7e63f247d8113, 0x58b2acc1df8c9a, 0x19ef238355322, 0x339c5a67480c, 0x01000220044},
{0x7017e7be387ae107, 0x1afecbeb09a982, 0x91d1a9b679f82, 0x396e0fc828a2, 0x00080001002},
{0x71e01901df822011, 0x263665739af91f, 0xf6a6f3cea50b0, 0x21d74a9656e8, 0x00000200004},
{0x0fd01881c07a6104, 0x75394e09c4b2ca, 0x5cb6b8c1e7ff4, 0x6188995f3157},
{0x71dff97edc73e015, 0x0a7d90ee25a348, 0x61688699db586, 0x3fb7dd50a418},
{0x0fdff8ffc78a2116, 0x5286ab7e83ae62, 0xda9574e678f90, 0x06ce5db5ad5c},
{0x71c007813b8ce115, 0x4d3bcdf8d85adc, 0x5c23f978ed0f3, 0x1e2c621f971a},
{0x71e000c0078ec117, 0x017dde9b20b0d5, 0x6cf46e5a6f0f7, 0x7a505dc81443},
{0x7e381841c7fce115, 0x027f464d66ea0c, 0xac0db23cd9139, 0x2613f7da17b5},
{0x0fe7e0ff038ec114, 0x13c4979887ba9d, 0x5db01e5be4eee},
{0x01d01801c0030112, 0x4cb8bb21bf4304, 0xb6f0039dacb41},
{0x7007e6bf24726101, 0x16b8f3440cf01a, 0xe32af56d4470e},
{0x70301fc1ff876003, 0x4e392514dce977, 0xd2ae9a043e26a},
{0x01fffebfe7f08000, 0x005c0f0080a00a, 0xc2b205c5ebe1e},
{0x7e30004007f98001, 0x29112080522885},
{0x7fe7e1fe180f6001, 0x3884184171249c},
{0x7e17f8bfc4044005, 0x0400c0080900e0},
{0x0fc80640207d4010},
{0x0ff7fe7ee388a100},
{0x7ff01e80e3f9e007},
{0x01d801c11c06a016},
{0x01ffe73e3bf46112},
{0x0fc000c0047f6100},
{0x01c7fffffff0e000},
{0x7ff81fc0fff02001}

};

35

Approved for public release; distribution is unlimited.

9.2 Driver Code
#include <iostream>
#include <iomanip>
#include <sstream>
#include <cstdlib>
#include <cstring>
#include <unistd.h>
#include <stdint.h>
#include "t258.h"

using namespace std;

#define Px(x) "0x" << setw(16) << setfill(’0’) << hex << (x)
#define Pu(x) setw(18) << setprecision(16) << setfill(’ ’) << fixed << dec << (x)

void Vtab(uz seed, bool qz) {
int NL = 8, NS = 4, n = 5; // # large, small, sample
rng *z[NL][NS]; // stream and substream rngs

for(int i=0; i<NL; i++) // large jumps
for(int j=0; j<NS; j++) { // small jumps

z[i][j] = new rng(seed);
z[i][j]->init().jumpk(i, rng::JL).jumpk(j, rng::JS);

}

cout << "Vtab(" << Px(seed) << ", " << (qz ? "uz": "u01") << "): "
<< "jump = J*2^" << dec << rng::JL << " + K*2^" << rng::JS
<< endl << endl;

for(int i=0; i<NL; i++) { // large jumps
cout << setw(22) << setfill (’ ’) << "J = " << setw(3) << i << endl;

cout << " n ";
for(int j=0; j<NS; j++)

cout << setw(16) << "K = " << setw(3) << j;
cout << endl;

for(int k=1; k<=n; k++) { // samples
cout << setw(3) << dec << setfill(’ ’) << k << " ";
for(int j=0; j<NS; j++) // small jumps

if(qz)
cout << " " << Px(z[i][j]->gen()); // integer

else
cout << " " << Pu(z[i][j]->u01()); // U(0,1)

cout << endl;
}
cout << endl;

}
}

void Vjump(uz seed, uz pmax) { // inductive jump verification
rng z0(seed), z1(seed); // T258 objects, same state

cout << "Vjump(" << Px(seed) << ", " << dec << pmax << "): ";

if(z0.jump(0) != z1.t()) { // base
cerr << "fail base check" << endl;
exit(1);

}

for(uz p=1; p<=pmax; p++) // induction
if(z0.init().jump(p) != z1.init().jump(p-1).jump(p-1)) {

cerr << "fail induction check, p=" << dec << p << endl;
exit(1);

}

cout << "for all p = 0:" << pmax << " jump(p) == t^(2^p)" << endl;
}

int main (int argc , char* argv[]) {
uz seed = 0xd8940e83ec602c7b; // rng seed default
uz pmax = 172 + 64;

Vtab(seed, true);
Vtab(seed, false);
Vjump(seed, pmax);

}

36

Approved for public release; distribution is unlimited.

10. Conclusions and Recommendations
The T258 RNG passes tests for randomness and provides high-resolution 53-bit
random real numbers.

T258 class RNG objects are intrinsically thread-safe in the sense that instances do
not interact and are thus computationally independent. But this is not sufficient for
statistical independence.

The enumeration of threads and initialization of thread RNG streams at offsets of
2172 ensures that the 286 available threads are statistically independent and that com-
putation are easily reproducible. Within threads, increments of 286 provide statisti-
cal independence of 286 stochastic quantities with stream length 286. Verification of
the jump computations guarantees these independence properties.

When C++11 compilers become widely available, a T258 engine can be incorpo-
rated into the C++11 <random> library framework. Care must be taken to preserve
the independence properties. Otherwise, as noted in Section 1, no sets of quantities
within or among threads can be claimed to be independent random samples.

37

Approved for public release; distribution is unlimited.

11. References
1. Kernigan BW, Ritchie DM. The C programming language. 2nd ed. Upper Sad-

dle River (NJ): Prentice Hall; 1988. 3

2. Collins JC. Testing, selection, and implementation of random number genera-
tors. Aberdeen Proving Ground (MD): Army Research Laboratory (US); 2008
Jul. Report No.: ARL-TR-4498. 3, 8, 11, 12, 13

3. L‘Ecuyer P. Maximally equidistributed combined Tausworthe generators.
Mathematics of Computation. 1996;65(312):203–213. 10, 15

4. L‘Ecuyer P. Tables of maximally equidistributed combined LFSR generators.
Mathematics of Computation. 1999;68(225):261–269. 13, 16

5. L‘Ecuyer P. Tables of linear congruential generators of different sizes and good
lattice structure. Mathematics of Computation. 1999;68(225):249–260. 27

38

Approved for public release; distribution is unlimited.

List of Symbols, Abbreviations, and Acronyms

CDF cumulative distribution function

CP characteristic polynomial

LCG linear congruential generator

LFSR linear feedback shift register

QT QuickTaus

RNG random number generator

STL Standard Template Library

39

Approved for public release; distribution is unlimited.

1
(PDF)

DEFENSE TECHNICAL
INFORMATION CTR
DTIC OCA

2
(PDF)

DIRECTOR
US ARMY RESEARCH LAB
RDRL CIO L
IMAL HRA MAIL & RECORDS MGMT

1
(PDF)

GOVT PRINTG OFC
A MALHOTRA

1
(PDF)

DIR US ARMY EVALUATION CTR
HQ
TEAE SV
P A THOMPSON

1
(PDF)

DIR USARL
RDRL SL

P BAKER

21
(PDF)

DIR USARL
RDRL DPW

T HOLDREN
RDRL SL

D BAYLOR
P DISALVO
T STADTERMAN

RDRL SLB
R BOWEN
G MANNIX

RDRL SLB D
J COLLINS
J EDWARDS
R GROTE
L MOSS
E SNYDER

RDRL SLB E
M MAHAFFEY

RDRL SLB G
N ELDREDGE

RDRL SLB S
R DIBELKA
C KENNEDY
D LYNCH
M PERRY
R SAUCIER
G SAUERBORN

RDRL SLB W
S SNEAD

RDRL SLE
R FLORES

40

	List of Figures
	Introduction
	Legacy
	Integers
	Linear Congruential Generator
	Independent RNG Streams
	Jumping Ahead for LCGs
	Legacy Issues

	Linear Feedback Shift Register
	Definition
	Matrix Representation
	Recurrence Relations
	QuickTaus Trinomial LFSR
	Characteristic Polynomial
	State Details
	Jump
	Jump Example

	T258
	Implementation
	The Uniform(0,1) Distribution
	Initialization
	Seeding
	Parallel Processing
	Run Time

	SCR 1049–1050
	SCR 1908
	Consequences
	Jump Computation Failure
	Stream independence Failure

	SCR 2138
	Identity
	Implementation
	Jump Verification

	SCR 2142
	Demonstration and Verification
	T258 Class Code
	Driver Code

	Conclusions and Recommendations
	References
	List of Symbols, Abbreviations, and Acronyms
	Distribution List

